Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

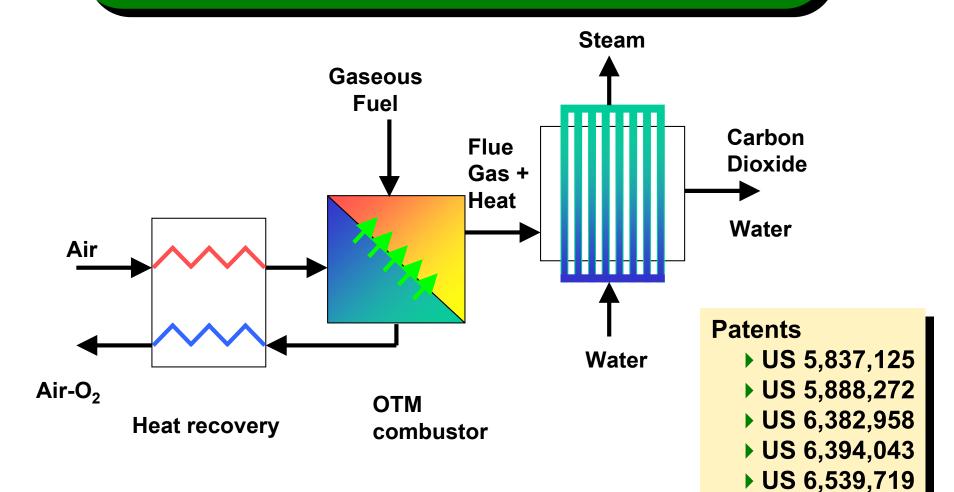
Oxy-Combustion (2)

CO₂ Capture by Membrane Based Oxy-Fuel Boiler

Minish M. Shah, Bart van Hassel, Max Christie and Juan Li

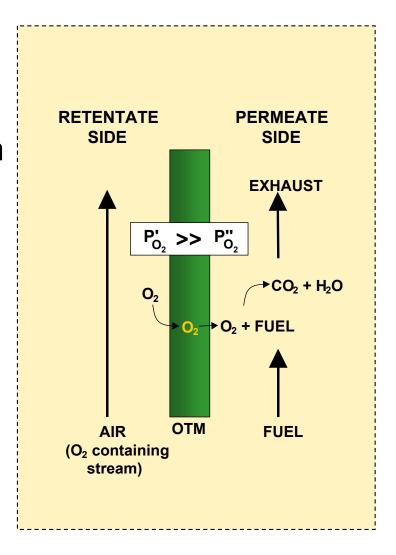
May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

Outline


- Advanced Boiler Concept
- ▶ Technology Status
- Cost/Performance Projections
- Summary

Advanced Boiler Concept

▶ US 6,562,104


A novel oxy-fuel boiler for generating a CO₂-rich product stream for sequestration

Advanced Boiler Benefits

- Increase in thermal efficiency from ~87 % to ~95% (HHV)
- ▶ Reduction in power for oxygen supply by 70 – 80% compared to the oxy-fuel process using cryogenic O₂
- ▶ CO₂ product ready for sequestration
- Ultra Low NOx emissions

Oxy-Fuel Combustion Without Producing Oxygen

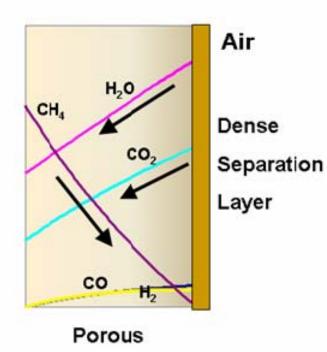
Objectives

- Develop robust membranes for oxy-fuel combustion
- Develop low-cost membrane manufacturing process
- Demonstrate combustion in a multi-tube system
- Evaluate economic feasibility

Material and Manufacturing Development

▶ New Material System: 2004/2005

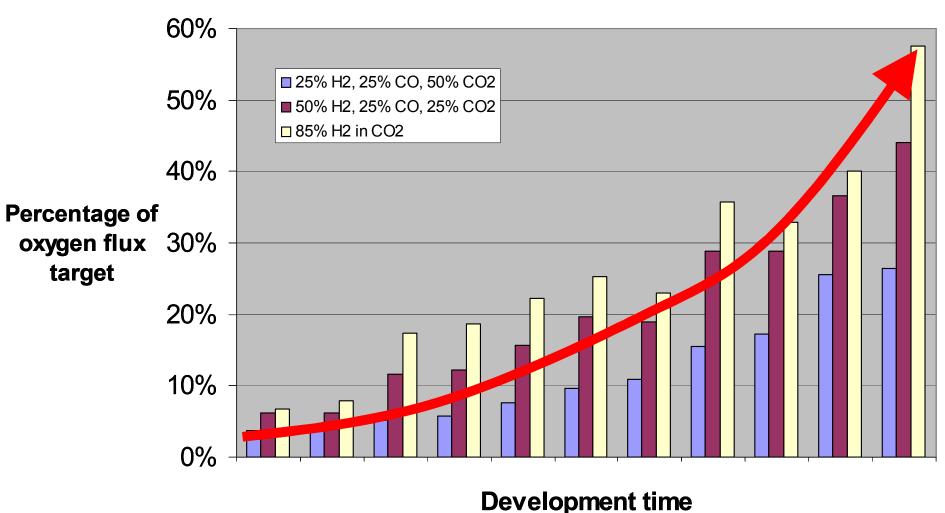
- Accumulated >12,000 hrs. failure free operation
- No failure in cycling: (Chemical as well as thermal; Multiple startup and shutdowns)


Support Material Criteria

- Mechanically Robust
- Porosity and Tortuosity

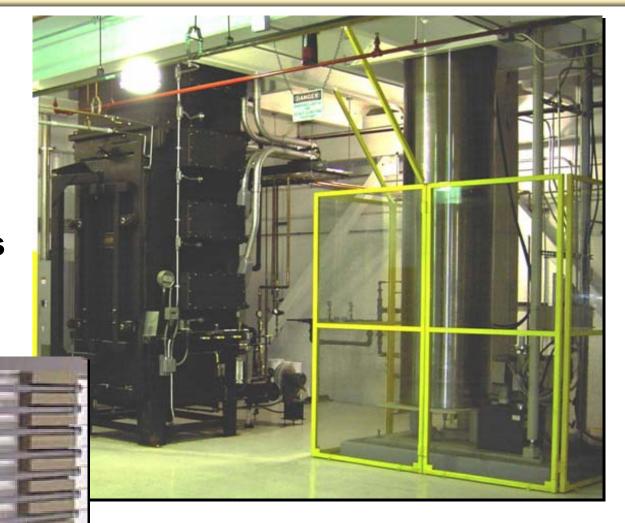
Separation Layer Criteria:

- Thermal expansion match
- Low compositional expansion
- Chemical stability (oxidizing & reducing
- Low or no reactivity with porous support
- Sufficient conductivity

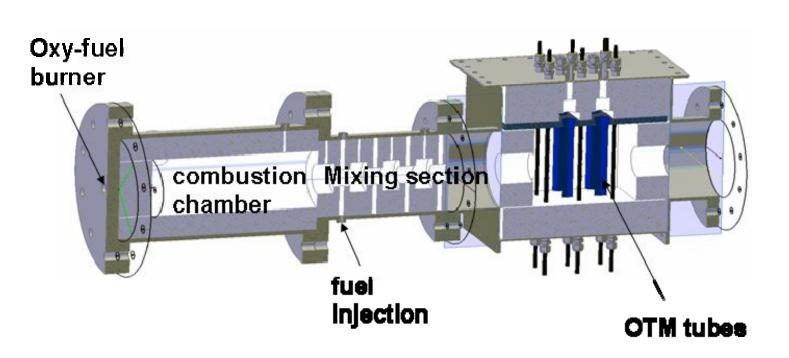


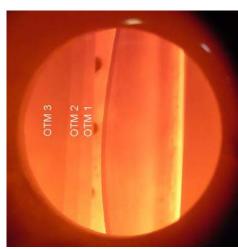
support

Material and Manufacturing Development – Flux



Material and Manufacturing Development – Scale-up




- Powder production:
 - PSC (Woodinville, WA)
- OTM tube fabrication:
 - PST (Indianapolis, IN)
- Rigorous QC protocols implemented

Multi-Tube Combustor Tests

- Achieved complete combustion
- Average oxygen flux under complete combustion condition is below target
- Strategy to improve membrane performance is in place

Membranes – Disks To Multi-Tube Reactor

	Disk	Single Tube Reactor	Multi-Tube Reactor
Materials	Latest	2 – 3 months old	4 – 6 months old
Degree of Oxidation	Partial	Partial	Complete
O ₂ Flux As % of Target	80%	60%	<20%

Conceptual Boiler Design

- Sub-contract: ALSTOM Power
- Industrial boiler: 100,000 lb/hr steam
- Preferred design selected
- On schedule for detailed economic evaluation by 2Q 2006

Projections For Coal-Fired Boiler

- Great potential for efficiency improvement
 - Energy penalty 4% compared to 16% for cryogenic O₂
 - Energy penalty of 10% due to CO₂ compression and purification not impacted by advanced boiler
- Higher CO₂ capture efficiency combined with lower energy penalty leads to lower costs

	Oxy-Coal Boiler 99.5% O ₂	Adv. Coal Boiler 100% O ₂
PowerGen Efficiency	34.5%	39.6%
Cost of CO ₂ Avoided \$/ton	41	20 - 30

CO₂ Purity – 96%; Air Leak – 3% CO₂ transportation and injection costs not included

Technology Roadmap

Commercial Demonstration

Pilot w/CO2 Capture

Commercial
Application in
Industrial
Furnaces

Pre-Pilot Coal

Proof of Concept w/NG (DE-FC26-01NT41147)

- Robust Material System
- Multi-tube Lab Demo
- Industrial Boiler Economics

- Target Flux
- Manufacturing Scale-Up
- Solid Fuel Process Integration
- Coal plant economics

2005

2006

2007

2008

2009

2010

2011

2012

Summary

- Robust membranes developed
- Demonstrated complete combustion in multi-tube reactor
- Potential for CO₂ capture with minimum energy penalty
- Further work required for flux and manufacturing scale-up
- Developing concepts for solid fuels process integration

Acknowledgements

This presentation was written with support of the U.S. Department of Energy under Contract No. DE-FC26-01NT41147. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted presentation.

